Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569044

RESUMO

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Assuntos
Insulinas , Succinato Desidrogenase , Animais , Humanos , Masculino , Camundongos , Insulinas/metabolismo , Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Succinato Desidrogenase/metabolismo
2.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641535

RESUMO

Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.

3.
J Physiol ; 601(21): 4667-4689, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589339

RESUMO

Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.


Assuntos
Retardo do Crescimento Fetal , Placenta , Recém-Nascido , Gravidez , Feminino , Humanos , Tronco Encefálico , Pulmão , Hipóxia
4.
Res Sq ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577708

RESUMO

The actin cytoskeleton is a key determinant of cell and tissue homeostasis. However, tissue-specific roles for actin dynamics in aging, notably brain aging, are not understood. Here, we show that there is an age-related increase in filamentous actin (F-actin) in Drosophila brains, which is counteracted by prolongevity interventions. Critically, modulating F-actin levels in aging neurons prevents age-onset cognitive decline and extends organismal healthspan. Mechanistically, we show that autophagy, a recycling process required for neuronal homeostasis, is disabled upon actin dysregulation in the aged brain. Remarkably, disrupting actin polymerization in aged animals with cytoskeletal drugs restores brain autophagy to youthful levels and reverses cellular hallmarks of brain aging. Finally, reducing F-actin levels in aging neurons slows brain aging and promotes healthspan in an autophagy-dependent manner. Our data identify excess actin polymerization as a hallmark of brain aging, which can be targeted to reverse brain aging phenotypes and prolong healthspan.

5.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37144684

RESUMO

A major challenge in the biology of aging is to understand how specific age-onset pathologies relate to the overall health of the organism. The integrity of the intestinal epithelium is essential for the wellbeing of the organism throughout life. In recent years, intestinal barrier dysfunction has emerged as an evolutionarily conserved feature of aged organisms, as reported in worms, flies, fish, rodents and primates. Moreover, age-onset intestinal barrier dysfunction has been linked to microbial alterations, elevated immune responses, metabolic alterations, systemic health decline and mortality. Here, we provide an overview of these findings. We discuss early work in the Drosophila model that sets the stage for examining the relationship between intestinal barrier integrity and systemic aging, then delve into research in other organisms. An emerging concept, supported by studies in both Drosophila and mice, is that directly targeting intestinal barrier integrity is sufficient to promote longevity. A better understanding of the causes and consequences of age-onset intestinal barrier dysfunction has significant relevance to the development of interventions to promote healthy aging.


Assuntos
Envelhecimento , Longevidade , Animais , Camundongos , Envelhecimento/patologia , Drosophila/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Longevidade/fisiologia
6.
Sci Adv ; 9(14): eade9997, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027465

RESUMO

RNA editing, the endogenous modification of nucleic acids, is known to be altered in genes with important neurological function in schizophrenia (SCZ). However, the global profile and molecular functions of disease-associated RNA editing remain unclear. Here, we analyzed RNA editing in postmortem brains of four SCZ cohorts and uncovered a significant and reproducible trend of hypoediting in patients of European descent. We report a set of SCZ-associated editing sites via WGCNA analysis, shared across cohorts. Using massively parallel reporter assays and bioinformatic analyses, we observed that differential 3' untranslated region (3'UTR) editing sites affecting host gene expression were enriched for mitochondrial processes. Furthermore, we characterized the impact of two recoding sites in the mitofusin 1 (MFN1) gene and showed their functional relevance to mitochondrial fusion and cellular apoptosis. Our study reveals a global reduction of editing in SCZ and a compelling link between editing and mitochondrial function in the disease.


Assuntos
RNA , Esquizofrenia , Humanos , RNA/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Mitocôndrias/genética
7.
Front Cell Neurosci ; 17: 1154772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066075

RESUMO

Background: Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions. Methods: Near-term fetal sheep were administered continuous intravenous infusion of either creatine (6 mg kg-1 h-1) or isovolumetric saline from 122 to 134 days gestational age (dGA; term is approx. 145 dGA). At 131 dGA, global hypoxia was induced by a 10 min umbilical cord occlusion (UCO). Fetuses were then recovered for 72 h at which time (134 dGA) cerebral tissue was collected for either RT-qPCR or immunohistochemistry analyses. Results: UCO resulted in mild injury to the cortical gray matter, thalamus and hippocampus, with increased cell death and astrogliosis and downregulation of genes involved in regulating injury responses, vasculature development and mitochondrial integrity. Creatine supplementation reduced astrogliosis within the corpus callosum but did not ameliorate any other gene expression or histopathological changes induced by hypoxia. Of importance, effects of creatine supplementation on gene expression irrespective of hypoxia, including increased expression of anti-apoptotic (BCL-2) and pro-inflammatory (e.g., MPO, TNFa, IL-6, IL-1ß) genes, particularly in the gray matter, hippocampus, and striatum were identified. Creatine treatment also effected oligodendrocyte maturation and myelination in white matter regions. Conclusion: While supplementation did not rescue mild neuropathology caused by UCO, creatine did result in gene expression changes that may influence in utero cerebral development.

8.
Science ; 380(6641): 130-132, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053333

RESUMO

Higher global temperatures are increasing the frequency of flash droughts.

9.
Nat Aging ; 2(6): 494-507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36213625

RESUMO

The effects of aging on the brain are widespread and can have dramatic implications on the overall health of an organism. Mitochondrial dysfunction is a hallmark of brain aging, but, the interplay between mitochondrial quality control, neuronal aging, and organismal health is not well understood. Here, we show that aging leads to a decline in mitochondrial autophagy (mitophagy) in the Drosophila brain with a concomitant increase in mitochondrial content. We find that induction of BCL2-interacting protein 3 (BNIP3), a mitochondrial outer membrane protein, in the adult nervous system induces mitophagy and prevents the accumulation of dysfunctional mitochondria in the aged brain. Importantly, neuronal induction of BNIP3-mediated mitophagy increases organismal longevity and healthspan. Furthermore, BNIP3-mediated mitophagy in the nervous system improves muscle and intestinal homeostasis in aged flies, indicating cell non-autonomous effects. Our findings identify BNIP3 as a therapeutic target to counteract brain aging and prolong overall organismal health with age.


Assuntos
Drosophila , Mitofagia , Animais , Mitofagia/fisiologia , Envelhecimento , Autofagia , Mitocôndrias/metabolismo
10.
Ann Neurol ; 92(6): 1066-1079, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054160

RESUMO

OBJECTIVE: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS: Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS: Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION: Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.


Assuntos
Asfixia Neonatal , Epilepsia , Pregnanolona , Animais , Humanos , Recém-Nascido , Anticonvulsivantes/uso terapêutico , Asfixia Neonatal/complicações , Asfixia Neonatal/tratamento farmacológico , Epilepsia/tratamento farmacológico , Fenobarbital/uso terapêutico , Convulsões/tratamento farmacológico , Ovinos , Animais Recém-Nascidos , Modelos Animais de Doenças
11.
J Physiol ; 600(13): 3193-3210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587817

RESUMO

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1  h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (• OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral • OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and • OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of • OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and • OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.


Assuntos
Creatina , Hipóxia Fetal , Animais , Creatina/metabolismo , Creatina/farmacologia , Suplementos Nutricionais , Feminino , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glicerol/metabolismo , Humanos , Hipóxia/metabolismo , Lactatos , Estresse Oxidativo , Gravidez , Piruvatos/metabolismo , Ovinos , Cordão Umbilical/fisiologia
12.
Exp Neurol ; 352: 114049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305987

RESUMO

BACKGROUND: Neurovascular coupling leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity. Reduced cerebral functional responses may predispose to tissue hypoxia when neural activity is increased. Intrauterine inflammation, identified clinically as chorioamnionitis, is a major contributor to the neuropathology arising after preterm birth. The impact of chorioamnionitis on the preterm cerebral functional haemodynamic response is unknown. Previously, we have reported that somatosensory stimulation produces predominantly positive cerebral haemodynamic responses (i.e., increased cerebral oxygenation) in preterm lambs, which are reduced with dopamine treatment. As preterm infants born after chorioamnionitis often suffer from hypotension and are treated with dopamine, we aimed to investigate how chorioamnionitis with and without dopamine treatment affect the cerebral haemodynamic response in preterm lambs. METHODS: At 119 days of gestation, intrauterine inflammation was induced by intra-amniotic injection of lipopolysaccharide (LPS) in pregnant ewes. At 126-7 days of gestation (term is ~147 days), these LPS-exposed lambs were delivered and mechanically ventilated. The cerebral functional response was assessed by near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulation of 1.8, 4.8 and 7.8 s durations without dopamine; and 4.8 and 7.8 s stimulations with intravenous dopamine infusion. RESULTS: Stimulation for 1.8, 4.8 and 7.8 s durations led to negative functional responses (decreased ΔoxyHb) in 5 (62.5%), 5 (62.5%) and 4 (50%) of 8 preterm lambs respectively, while other lambs showed positive responses (increased ∆oxyHb). Dopamine infusion increased baseline tissue oxygenation index (TOI), oxyHb and total Hb. In lambs with a positive functional response, dopamine decreased the evoked ΔoxyHb response, increasing the overall incidence of negative cerebral haemodynamic responses. CONCLUSIONS: Somatosensory stimulation produced mostly negative responses with decreased cerebral oxygenation in preterm lambs exposed to intrauterine inflammation, contrasting with our previous findings of predominantly positive responses in non-inflamed, control, preterm lambs. Dopamine increased baseline cerebral oxygenation, but further increased the incidence of negative functional responses. Impaired neurovascular coupling leading to intermittent localised tissue hypoxia may therefore contribute to the neuropathy in infants with chorioamnionitis, with the risk of injury exacerbated with dopamine treatment.


Assuntos
Corioamnionite , Nascimento Prematuro , Animais , Animais Recém-Nascidos , Corioamnionite/tratamento farmacológico , Dopamina , Feminino , Hemodinâmica/fisiologia , Humanos , Hipóxia , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Lipopolissacarídeos , Gravidez , Ovinos
13.
Psychoneuroendocrinology ; 139: 105705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276552

RESUMO

BACKGROUND: A correct balance of activity of the GABA and glutamate systems is vital for optimal neurodevelopment and general CNS function, and the dysregulation of this balance has been implicated in a number of neurological conditions. Maternal exposure to stressors is known to have long lasting, deleterious impacts on neurobehaviour, and similarly, results in dysregulation of inhibitory and excitatory pathways in the offspring. The current study aimed to examine effects on these pathways in a guinea pig model of prenatal stress and to elucidate whether increased neuroprotective support by postnatal neurosteroid supplementation would ameliorate adverse outcomes. METHODS: Prenatal stress was achieved by exposing pregnant guinea pigs dams to a strobe light for 2hrs/day on gestational age (GA) 50, 55, 60 and 65. Dams were allowed to spontaneously deliver (~GA70) and pups were orally administered either allopregnanolone analogue, ganaxolone (5 mg/kg/day in 45% cyclodextrin), the translocator protein (TSPO) agonist, emapunil (XBD173; 0.3 mg/kg/day in 1% tragacanth gum) or vehicle on postnatal days (PND) 1-7. Hippocampal samples were collected at PND30 to measure relative mRNA expression of components involved in the inhibitory GABAergic pathway and exctitatory glutamatergic pathway by real-time PCR. GABAergic interneurons were quantified by assessing immunohistochemical protein expression of markers parvalbumin, calbindin and calretinin. RESULTS: mRNA expression of GABAergic pathway components at one week of age indicated immature expression profiles of the GABAA receptors as well as decreased GABA synthesis and transport suggesting reduced extrasynaptically-mediated tonic inhibition. Expression profiles of the pathways examined evolved between one week and one month of age but an imbalance in inhibitory/excitatory components persisted. The allopregnanolone analogue ganaxolone offered some protection against excitotoxicity in female hippocampus, however neurosteroid supplementation with ganaxolone or emapunil were unable to fully correct the GABAergic/glutamatergic imbalance observed following prenatal stress. CONCLUSION: Prenatal stress leads to programmed lasting effects on the major inhibitory and excitatory pathways in the guinea pig brain that continue evolving between the equivalent of early and late childhood. Neurosteroid therapies particularly improved outcomes in females. Further studies are required to identify additional therapeutic targets that are able to fully restore imbalances in the excitatory and inhibitory systems, which may act to prevent development of childhood behavioural disorders.


Assuntos
Neuroesteroides , Efeitos Tardios da Exposição Pré-Natal , Animais , Criança , Suplementos Nutricionais , Feminino , Cobaias , Hipocampo/metabolismo , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
14.
Oxid Med Cell Longev ; 2022: 3255296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132347

RESUMO

Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury. Pregnant Border-Leicester/Merino ewes with singleton fetuses were surgically instrumented at 118 days of gestation (dGa; term is ~145 dGA). A continuous infusion of either creatine (n = 15; 6 mg/kg/h) or isovolumetric saline (n = 16; 1.5 ml/kg/h) was administered to the fetuses from 121 dGa. After 10 days of infusion, a subset of fetuses (8 saline-, 7 creatine-treated) were subjected to 10 minutes of umbilical cord occlusion (UCO) to induce a mild global fetal hypoxia. At 72 hours after UCO, the fetal brain was collected for high-resolution mitochondrial respirometry and molecular and histological analyses. The results show that the transient UCO-induced acute hypoxia impaired mitochondrial function in the hippocampus and the periventricular white matter and increased the incidence of cell death in the hippocampus. Creatine treatment did not rectify the changes in mitochondrial respiration associated with hypoxia, but there was a negative relationship between cell death and creatine content following treatment. Irrespective of UCO, creatine increased the proportion of cytochrome c bound to the inner mitochondrial membrane, upregulated the mRNA expression of the antiapoptotic gene Bcl2, and of PCG1-α, a driver of mitogenesis, in the hippocampus. We conclude that creatine treatment prior to brief, acute hypoxia does not fundamentally modify mitochondrial respiratory function, but may improve mitochondrial structural integrity and potentially increase mitogenesis and activity of antiapoptotic pathways.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Creatina/administração & dosagem , Hipóxia Fetal/complicações , Feto/metabolismo , Idade Gestacional , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Modelos Animais de Doenças , Feminino , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ovinos , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
J Cereb Blood Flow Metab ; 42(2): 315-328, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551607

RESUMO

Neurovascular coupling has been well-defined in the adult brain, but variable and inconsistent responses have been observed in the neonatal brain. The mechanisms that underlie functional haemodynamic responses in the developing brain are unknown. Synchrotron radiation (SR) microangiography enables in vivo high-resolution imaging of the cerebral vasculature. We exploited SR microangiography to investigate the microvascular changes underlying the cerebral haemodynamic response in preterm (n = 7) and 7-10-day old term lambs (n = 4), following median nerve stimulation of 1.8, 4.8 and 7.8 sec durations.Increasing durations of somatosensory stimulation significantly increased the number of cortical microvessels of ≤200 µm diameter in 7-10-day old term lambs (p < 0.05) but not preterm lambs where, in contrast, stimulation increased the diameter of cerebral microvessels with a baseline diameter of ≤200 µm. Preterm lambs demonstrated positive functional responses with increased oxyhaemoglobin measured by near infrared spectroscopy, while 7-10-day old term lambs demonstrated both positive and negative responses. Our findings suggest the vascular mechanisms underlying the functional haemodynamic response differ between the preterm and 7-10-day old term brain. The preterm brain depends on vasodilatation of microvessels without recruitment of additional vessels, suggesting a limited capacity to mount higher cerebral haemodynamic responses when faced with prolonged or stronger neural stimulation.


Assuntos
Encéfalo , Angiografia Cerebral , Circulação Cerebrovascular , Microcirculação , Oxiemoglobinas/metabolismo , Síncrotrons , Animais , Animais Recém-Nascidos , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ovinos
17.
Front Genet ; 12: 714228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868199

RESUMO

A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.

18.
Am J Infect Control ; 49(12): 1554-1557, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802705

RESUMO

To protect both patients and staff, healthcare personnel (HCP) were among the first groups in the United States recommended to receive the COVID-19 vaccine. We analyzed data reported to the U.S. Department of Health and Human Services (HHS) Unified Hospital Data Surveillance System on COVID-19 vaccination coverage among hospital-based HCP. After vaccine introduction in December 2020, COVID-19 vaccine coverage rose steadily through April 2021, but the rate of uptake has since slowed; as of September 15, 2021, among 3,357,348 HCP in 2,086 hospitals included in this analysis, 70.0% were fully vaccinated. Additional efforts are needed to improve COVID-19 vaccine coverage among HCP.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Atenção à Saúde , Hospitais , Humanos , Recursos Humanos em Hospital , SARS-CoV-2 , Estados Unidos , United States Dept. of Health and Human Services , Cobertura Vacinal
19.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831126

RESUMO

There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE. METHODS: We reviewed preclinical studies up to 20 September 2021 using PubMed, EMBASE and OVID MEDLINE databases. The SYRCLE risk of bias assessment tool was utilized. RESULTS: Seventeen studies were identified. Dietary creatine was the most common administration route. Cerebral creatine loading was age-dependent with near term/term-equivalent studies reporting higher increases in creatine/phosphocreatine compared to adolescent-adult equivalent studies. Most studies did not control for sex, study long-term histological and functional outcomes, or test creatine post-HI. None of the perinatal studies that suggested benefit directly controlled core body temperature (a known confounder) and many did not clearly state controlling for potential study bias. CONCLUSION: Creatine is a promising neuroprotective intervention for HIE. However, this systematic review reveals key knowledge gaps and improvements to preclinical studies that must be addressed before creatine can be trailed for neuroprotection of the human fetus/neonate.


Assuntos
Envelhecimento/patologia , Creatina/farmacologia , Suplementos Nutricionais , Hipóxia-Isquemia Encefálica/patologia , Neuroproteção/efeitos dos fármacos , Animais , Creatina/metabolismo , Feminino , Masculino , Viés de Publicação , Risco , Análise de Sobrevida , Fatores de Tempo
20.
Psychoneuroendocrinology ; 133: 105423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601389

RESUMO

BACKGROUND: Prenatal stress is associated with long-term disturbances in white matter development and behaviour in children, such as attention deficit hyperactivity disorder (ADHD) and anxiety. Oligodendrocyte maturation and myelin formation is a tightly orchestrated process beginning during gestation, and therefore is very vulnerable to the effects of maternal prenatal stresses in mid-late pregnancy. The current study aimed to examine the effects of prenatal stress on components of the oligodendrocyte lineage to identify the key processes that are disrupted and to determine if postnatal therapies directed at ameliorating white matter deficits also improve behavioural outcomes. METHODS: Pregnant guinea pig dams were exposed to control-handling or prenatal stress with strobe light exposure for 2hrs/day on gestational age (GA) 50, 55, 60 and 65, and allowed to spontaneously deliver ~GA70. Pups were administered oral ganaxolone (5 mg/kg/day in 45% cyclodextrin) or the TSPO agonist, emapunil (XBD173; 0.3 mg/kg/day in 1% tragacanth gum) or vehicle, on postnatal days (PND) 1-7. Behavioural outcomes were assessed using open field and elevated plus maze testing on PND7 and PND27. Hippocampal samples were collected at PND30 to assess markers of oligodendrocyte development through assessment of total oligodendrocytes (OLIG2) and mature cells (myelin basic protein; MBP), and total neurons (NeuN) by immunostaining. Real-time PCR was conducted on hippocampal regions to assess markers of the oligodendrocyte lineage, markers of neurogenesis and components of the neurosteroidogenesis pathway. Plasma samples were collected for steroid quantification of cortisol, allopregnanolone, progesterone and testosterone by ELISA. RESULTS: Prenatal stress resulted in hyperactivity in male offspring, and anxiety-like behaviour in female offspring in the guinea pig at an age equivalent to late childhood. Postnatal ganaxolone and emapunil treatment after prenatal stress restored the behavioural phenotype to that of control in females only. The oligodendrocyte maturation lineage, translation of MBP mRNA-to-protein, and neurogenesis were disrupted in prenatally-stressed offspring, resulting in a decreased amount of mature myelin. Emapunil treatment restored mature myelin levels in both sexes, and reversed disruptions to the oligodendrocyte lineage in female offspring, an effect not seen with ganaxolone treatment. CONCLUSION: The marked and persisting behavioural and white matter perturbations observed in a clinically relevant guinea pig model of prenatal stress highlights the need for postnatal interventions that increase myelin repair and improve long-term outcomes. The effectiveness of emapunil treatment in restoring female offspring behaviour, and promoting maturation of myelin indicates that early therapeutic interventions can reverse the damaging effects of major stressful events in pregnancy. Further studies optimising target mechanisms and dosing are warranted.


Assuntos
Neuroesteroides , Pregnanolona/análogos & derivados , Efeitos Tardios da Exposição Pré-Natal , Purinas , Estresse Psicológico , Animais , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/prevenção & controle , Feminino , Cobaias , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/prevenção & controle , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Testes Neuropsicológicos , Neuroesteroides/farmacologia , Gravidez , Pregnanolona/farmacologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Purinas/farmacologia , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...